Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optogenetic tools for manipulation of cyclic nucleotides, functionally coupled to CNG-channels.

blue bPAC (BlaC) C. elegans in vivo Immediate control of second messengers
Br J Pharmacol, 18 Mar 2021 DOI: 10.1111/bph.15445 Link to full text
Abstract: The cyclic nucleotides cAMP and cGMP are ubiquitous second messengers that regulate numerous biological processes. Malfunctional cNMP signalling is linked to multiple diseases and thus is an important target in pharmaceutical research. The existing optogenetic toolbox in C. elegans is restricted to soluble adenylyl cyclases, the membrane-bound Blastocladiella emersonii CyclOp and hyperpolarising rhodopsins, yet missing are membrane-bound photoactivatable adenylyl cyclases and hyperpolarisers based on K+ -currents.
2.

The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.

blue bPAC (BlaC) CHO-K1 rat hippocampal neurons Xenopus oocytes Immediate control of second messengers
Sci Signal, 11 Aug 2015 DOI: 10.1126/scisignal.aab0611 Link to full text
Abstract: Blastocladiomycota fungi form motile zoospores that are guided by sensory photoreceptors to areas of optimal light conditions. We showed that the microbial rhodopsin of Blastocladiella emersonii is a rhodopsin-guanylyl cyclase (RhGC), a member of a previously uncharacterized rhodopsin class of light-activated enzymes that generate the second messenger cyclic guanosine monophosphate (cGMP). Upon application of a short light flash, recombinant RhGC converted within 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered within 100 ms. When expressed in Xenopus oocytes, Chinese hamster ovary cells, or mammalian neurons, RhGC generated cGMP in response to green light in a light dose-dependent manner on a subsecond time scale. Thus, we propose RhGC as a versatile tool for the optogenetic analysis of cGMP-dependent signaling processes in cell biology and the neurosciences.
Submit a new publication to our database